

Alfriston School

Fair, friendly, fulfilling, fun!

Maths Parent Presentation

November 2025

Department
for Education

National Centre
for Excellence in the
Teaching of Mathematics

Alfriston School

Fair, friendly, fulfilling, fun!

Aims of the session:

- To understand the phrase 'Teaching for Mastery'
- To have more of an understanding of how maths is taught at Alfriston
- To understand ways to support children at home

Department
for Education

National Centre
for Excellence in the
Teaching of Mathematics

Alfriston School

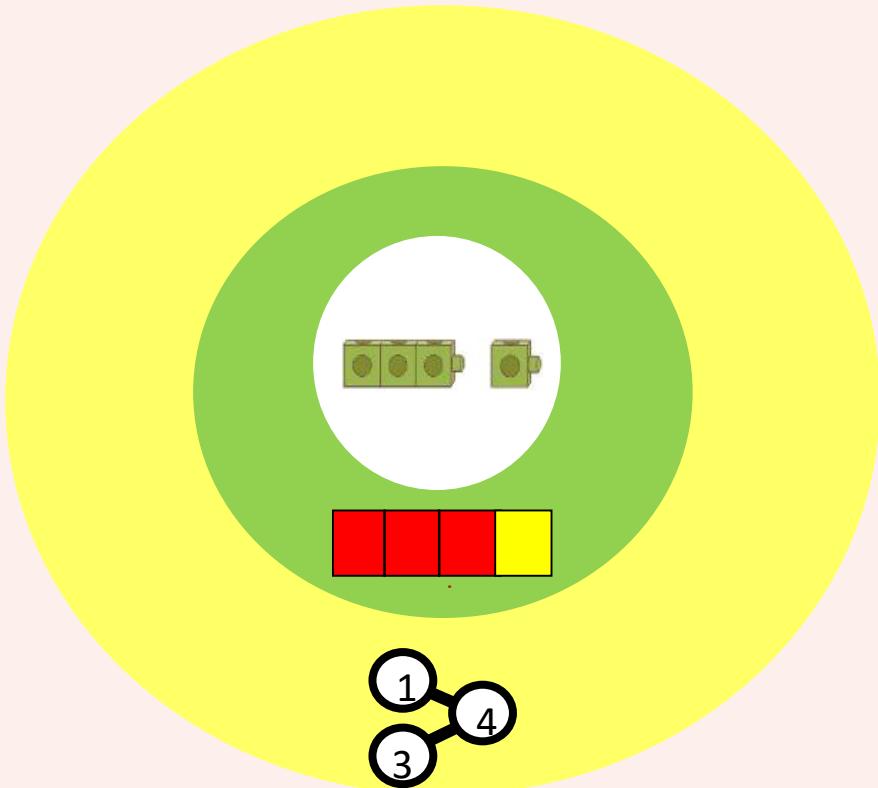
Fair, friendly, fulfilling, fun!

Aspects of Mastery:

Depth before breadth - a rigorous and systematic programme to ensure every child can achieve

It provides a deep understanding of the subject through a Pictorial, Concrete and Abstract approach

Mastery - when a concept or skill can be applied over time in a multiple of ways and to an unfamiliar setting


A child's mindset is more important than prior attainment

Alfriston School

Fair, friendly, fulfilling, fun!

The CPA Approach - representing and structuring the maths

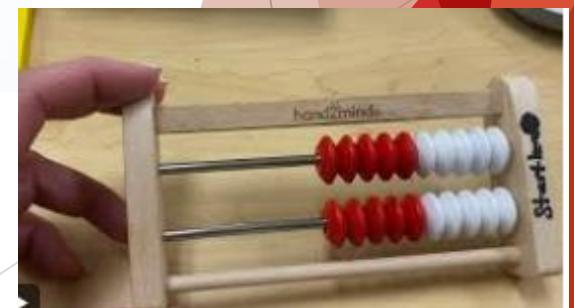
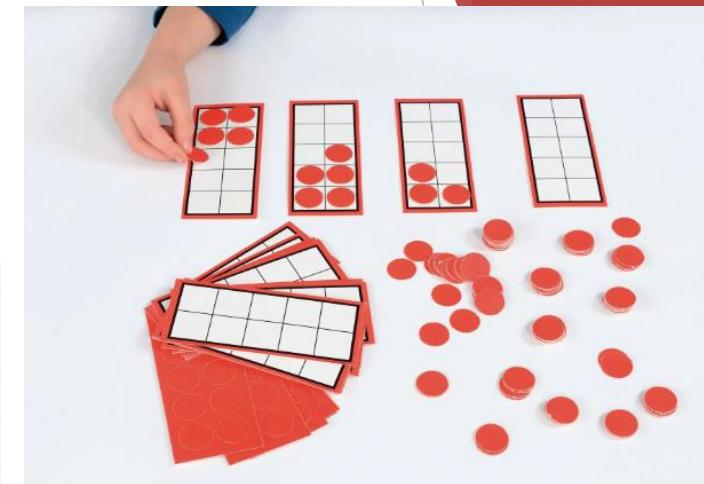
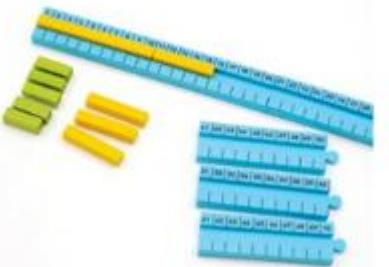
Concrete:

Resources such as cubes, counters and shapes

Pictorial:

Pictures, drawings

Abstract:

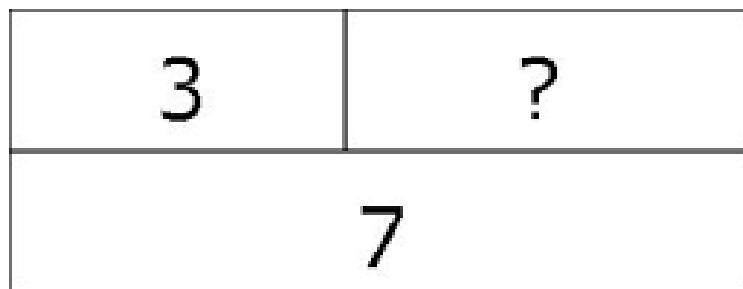
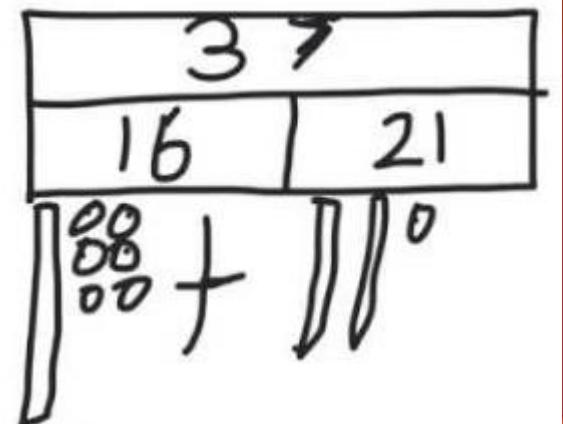
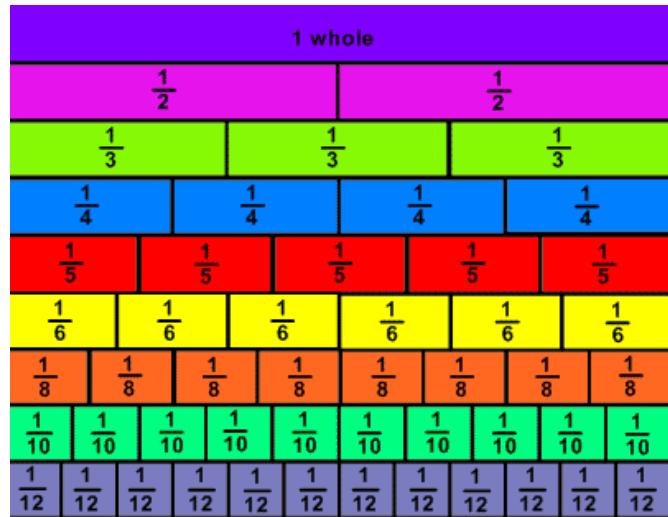



Numbers and symbols

Alfriston School

Fair, friendly, fulfilling, fun!

Concrete

Alfriston School




Fair, friendly, fulfilling, fun!

Pictorial

Hand-drawn addition problems using dot blocks:

$$4 + 7 = 11$$
$$5 + 7 = 12$$

Alfriston School

Fair, friendly, fulfilling, fun!

Abstract

$$2 \times 5 = 10$$

$$66 + 32 = 98$$

$$12 + \square = 17$$

$$\begin{array}{r} 427 \\ + 363 \\ \hline 790 \end{array}$$

$$\begin{array}{r} 29 \\ 18 \overline{)522} \\ 36 \\ \hline 162 \end{array}$$

$$1647 - 549 =$$

$$\begin{array}{r} 15613417 \\ - 549 \\ \hline 1098 \end{array}$$

Alfriston School

Fair, friendly, fulfilling, fun!

Lesson design:

- | | | |
|--|---|-------------------------------|
| Links to prior learning 'Reconnect' | = | All can access new learning |
| Carefully sequenced steps in progression | = | Secure understanding |
| Examples, representations and models are carefully selected (use of CPA) | = | Deep knowledge of mathematics |
| Procedural fluency (the steps/rules and the how to) and conceptual understanding (the why) are developed in tandem | = | Long-term success |
| Practice | = | Vital part of learning |

Alfriston School

Fair, friendly, fulfilling, fun!

In the classroom:

Whole-class interactive teaching

= All master the concepts necessary for the next part of the curriculum sequence

Teacher leads **back and forth interaction** “I do”, “We do”, “You do”. Including questioning, short tasks, explanation, demonstration, and discussion

= Children think, reason and apply their knowledge to solve problems

Precise **mathematical language**

= Children communicate their reasoning and thinking effectively

Stem sentences

= Teaches/reminds children of key ideas

Misconceptions or gaps identified quickly

= Prevents children falling behind

Significant time spent developing deep understanding of the key ideas

= Underpins future learning

Key **number facts** are learnt to automaticity, and other key mathematical facts are learned deeply and practised regularly

= Avoids cognitive overload in working memory and enables children to focus on new learning

Alfriston School

Fair, friendly, fulfilling, fun!

The outcome:

Children fluent in mathematics

- grasp the fundamentals of mathematics
- make connections
- become more confident with written and mental methods
- be confident with what they are doing and why
- recall and apply their knowledge rapidly and accurately

Children able to reason in mathematics

- able to explain why an answer is right or wrong
- follow a line of enquiry to a logical conclusion
- prove theories using mathematical language

Which would you
rather have?
2 x 5 toys
or
5 x 2 toys

Children able to problem solve in mathematics

- apply their mathematics to a variety of situations
- put maths into context
- break down problems into a series of manageable steps

Alfriston School

Fair, friendly, fulfilling, fun!

What does Maths Mastery
look like across the school?

Alfriston School

Fair, friendly, fulfilling, fun!

Maths in Reception

Early learning Goal - ELG

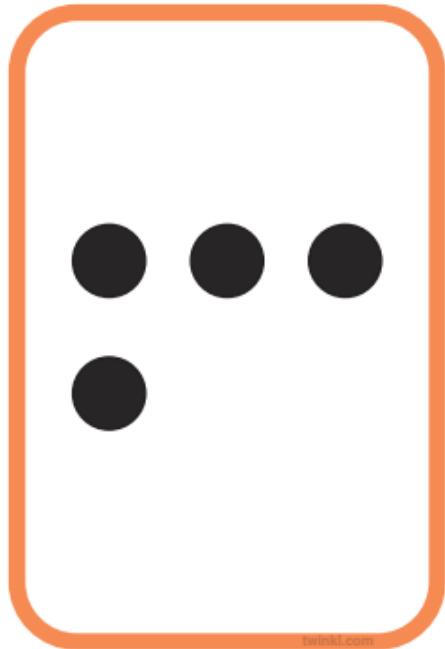
Mathematics

Number

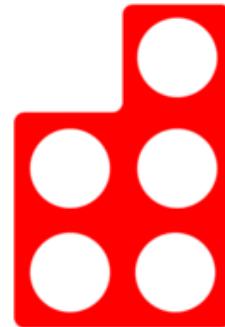
- Have a deep understanding of number to 10, including the composition of each number.
- Subitise (recognise quantities without counting) up to 5.
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.

Numerical Patterns

- Verbally count beyond 20, recognising the pattern of the counting system.
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

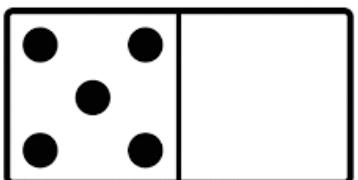


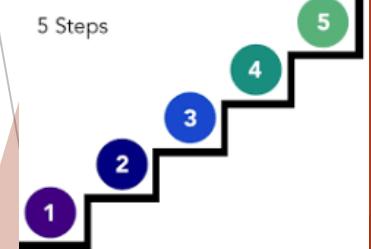
Mastery in Reception


Mastering Number

Reception Overview

Term 1	Term 2	Term 3
Pupils will build on previous experiences of number from their home and nursery environments, and further develop their subitising and counting skills. They will explore the composition of numbers within 5. They will begin to compare sets of objects and use the language of comparison.	Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5. They will begin to identify when two sets are equal or unequal and connect two equal groups to doubles. They will begin to connect quantities to numerals.	Pupils will consolidate their counting skills, counting to larger numbers and developing a wider range of counting strategies. They will secure knowledge of number facts through varied practice.


Subitising is the ability to look at a small set of objects and instantly know how many there are without counting them. For example, when rolling a dice we don't need to count the dots to know what we have rolled.


Mastering 5

Show me 5.
Show me 5
in another
way?

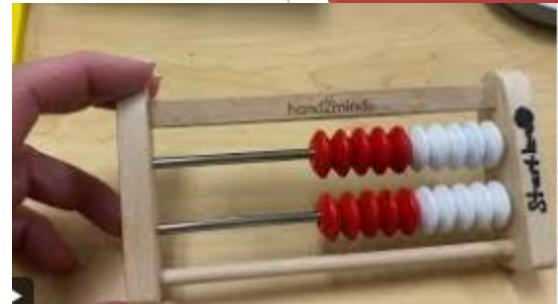
5

How do you know they
are the same number?
What is the same or
different about these
fives?

What does maths look like in Reception?

Continuous provision

What does maths look like in Reception?


Stem sentences

10 is made of...8 and 2

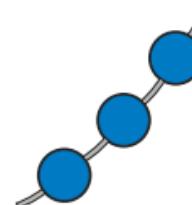
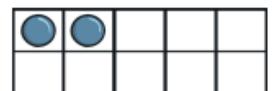
8 and 2 is...10

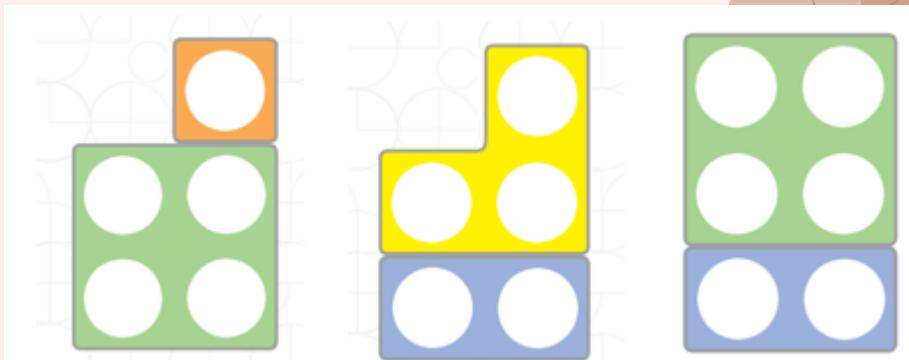
A rekenrek

- The ‘ready position’
- “the reds are ready to go”
- “one push”

Challenge

With children, count out 1, 2 or 3 items and hide them.

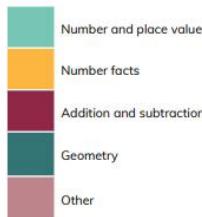


Ask children to use their fingers to show how many are hidden.


Ask children to watch as you add 1 more item to the hidden group.

How many are hidden now? What if you take one out?

Hen says these all show 2. True or false?

Which one is the odd one out? Explain your ideas to a grown up.



Alfriston School

Fair, friendly, fulfilling, fun!

Maths in Years 1 and 2

	Unit	Unit name
Autumn 1	1	Previous Reception experiences and counting within 100
Autumn 2	2	Comparison of quantities and part-whole relationships
Autumn 2	3	Numbers 0 to 5
Spring 1	4	Recognise, compose, decompose and manipulate 2D and 3D shapes
Spring 1	5	Numbers 0 to 10
Spring 2	6	Additive structures
Spring 2	7	Addition and subtraction facts within 10
Summer 1	8	Numbers 0 to 20
Summer 2	9	Unitising and coin recognition
Summer 2	10	Position and direction
Summer 2	11	Time

Year 1

Curriculum map

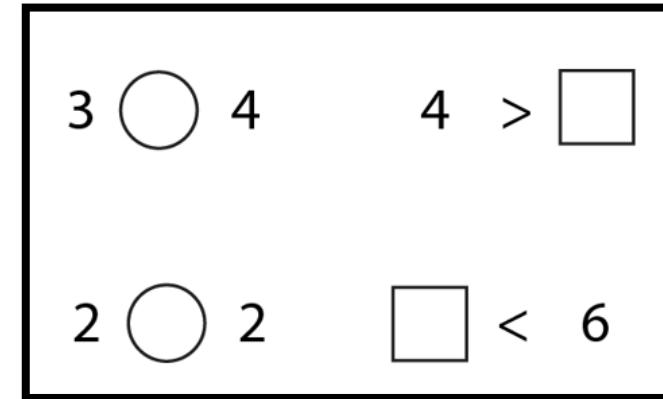
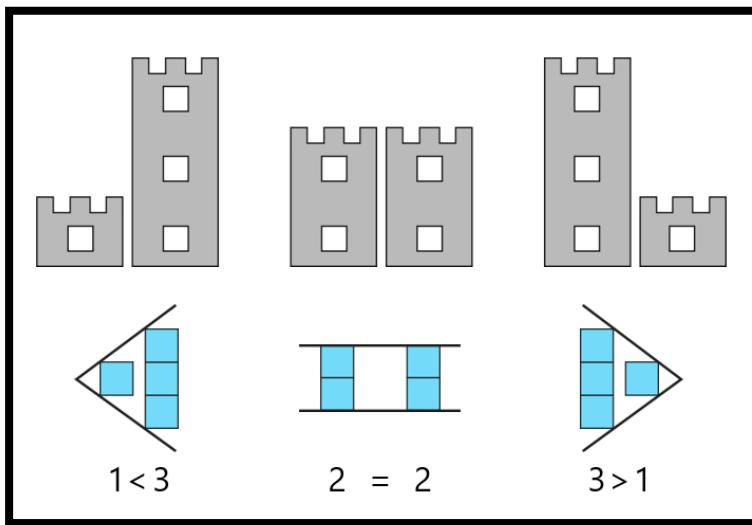
	Unit	Unit name
Autumn 1	1	Numbers 10 to 100
Autumn 1	2	Calculations within 20
Autumn 1	3	Fluently add and subtract within 10
Autumn 1	4	Addition and subtraction of two-digit numbers (1)
Autumn 2	5	Introduction to multiplication
Spring 1	6	Introduction to division structures
Spring 1	7	Shape
Spring 2	8	Addition and subtraction of two-digit numbers (2)
Summer 1	9	Money
Summer 1	10	Fractions
Summer 1	11	Time
Summer 1	12	Position and direction
Summer 2	13	Multiplication and division – doubling, halving, quotitive and partitive division
Summer 2	14	Sense of measure – capacity, volume, mass

Year 2

Curriculum map

NCETM

NATIONAL CENTRE FOR EXCELLENCE
IN THE TEACHING OF MATHEMATICS

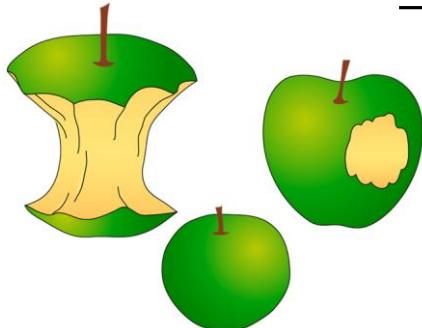


Alfriston School

Fair, friendly, fulfilling, fun!

- Use of CPA (different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

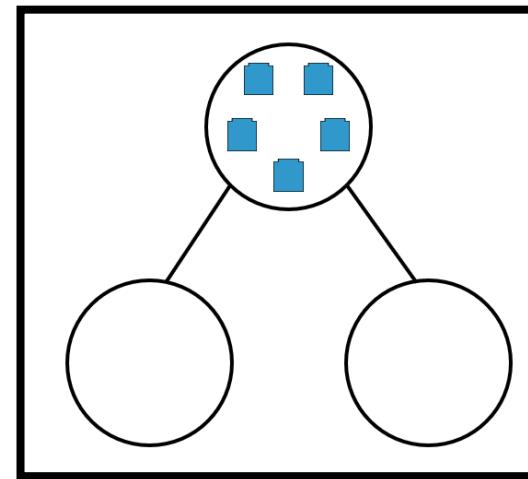
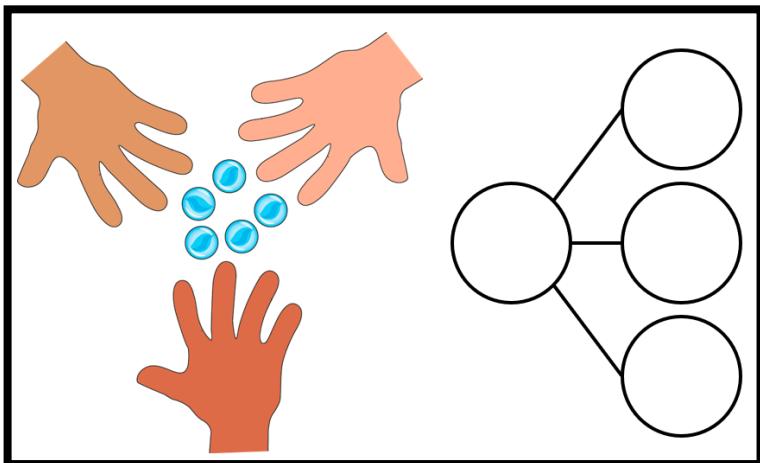
Maths in Year 1: Place Value

Comparison of quantities



Alfriston School

Fair, friendly, fulfilling, fun!

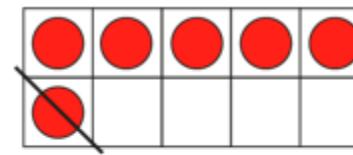
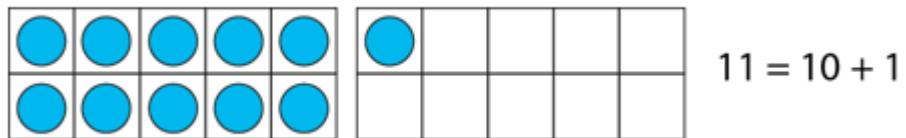
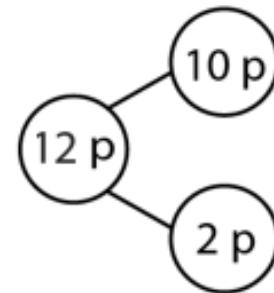
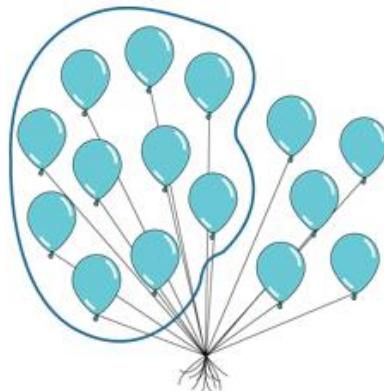
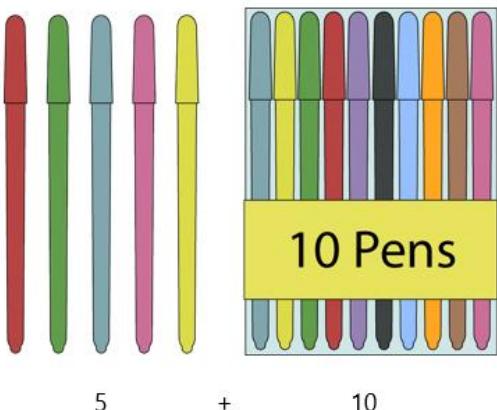


- Use of CPA (different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

Part-whole relationships

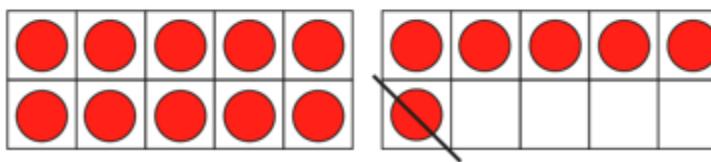
'This is a whole____, because I have all of it.'

'This is not a whole____, because I only have part of it.'

Liam says 'I have five cakes. I can put three cakes on one plate and three cakes on another plate.'
Is he right? Explain your thinking.

Alfriston School

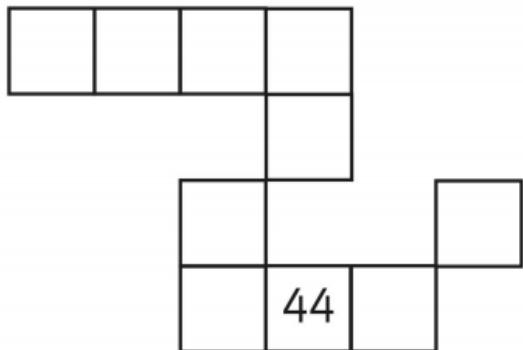

Fair, friendly, fulfilling, fun!

- Use of CPA
(different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

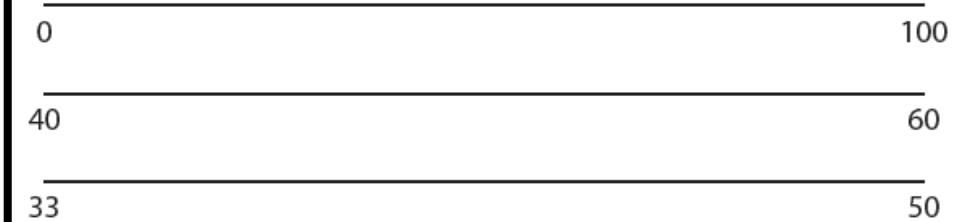
Composition of numbers to 20

$$6 - 1 = ?$$

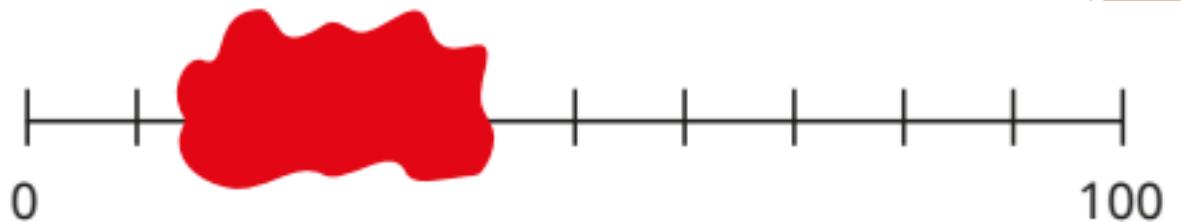
$$16 - 1 = ?$$


Alfriston School

Fair, friendly, fulfilling, fun!

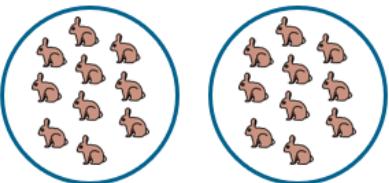

- Use of CPA
(different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

Maths in Year 2: Place Value


Numbers to 100

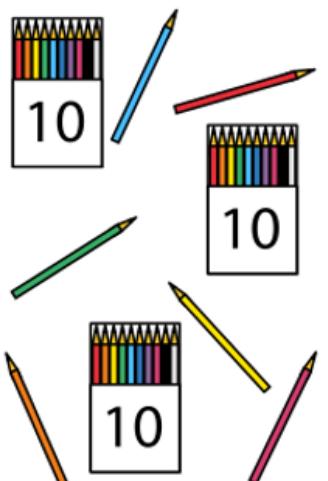
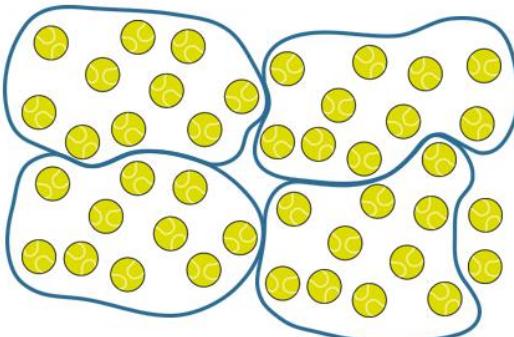
Place 47 on each of these empty number lines.

Max labels an odd number on the number line.
He spills some paint over his number.
What could Max's number be?

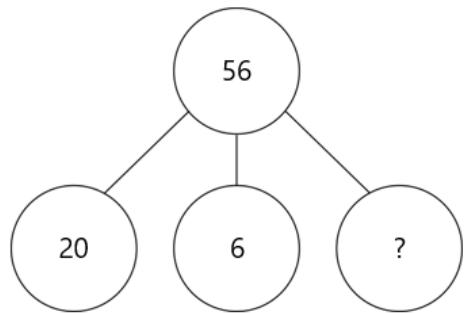
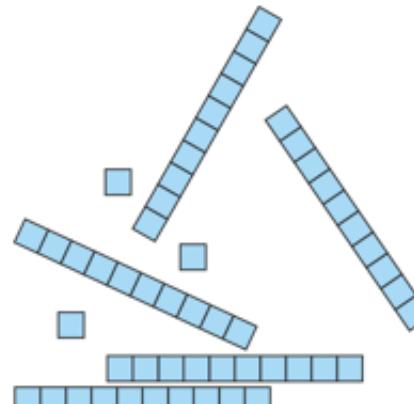

Alfriston School

Fair, friendly, fulfilling, fun!

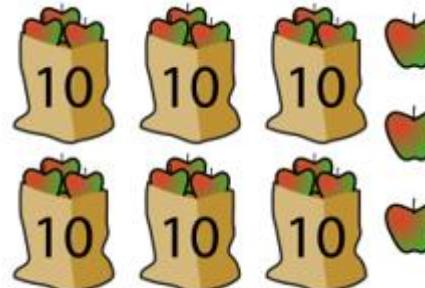
Composition of numbers to 100



forty-two

four tens two ones
42

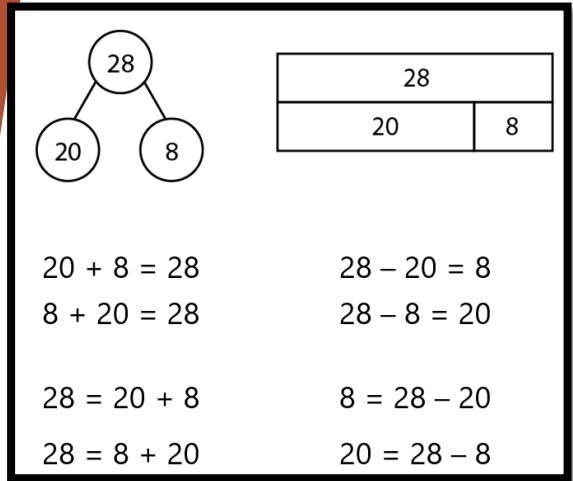



10s	1s
2	7


49	
40	9

- Use of CPA (different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

67



sixty-seven
tens and _ ones

Alfriston School

Fair, friendly, fulfilling, fun!

What equations can you write to match the part-part-whole model?

How many dots are there altogether?
How could you count these efficiently?

- Use of CPA (different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

Challenge – Fill in the missing symbols <, > or =

$50 + 6 \bigcirc 65$

$17 \bigcirc 1 + 70$

$50 + 6 \bigcirc 56$

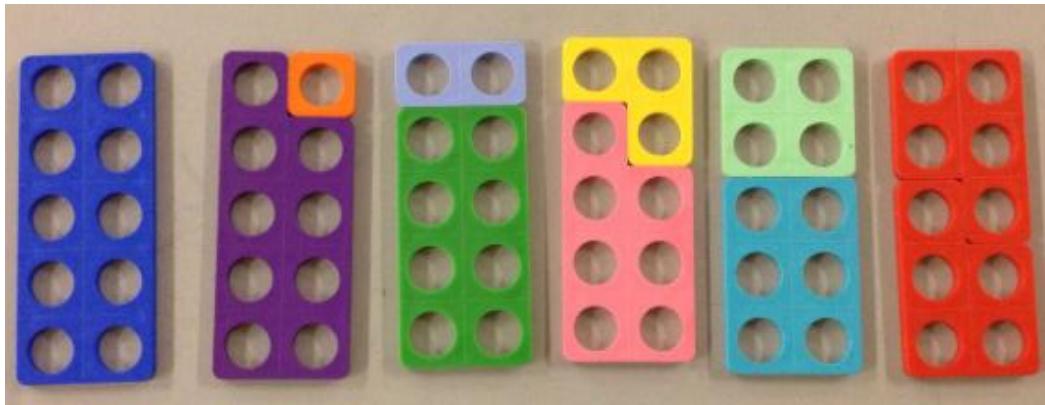
$71 \bigcirc 1 + 70$

$2 + 30 \bigcirc 3 + 20$

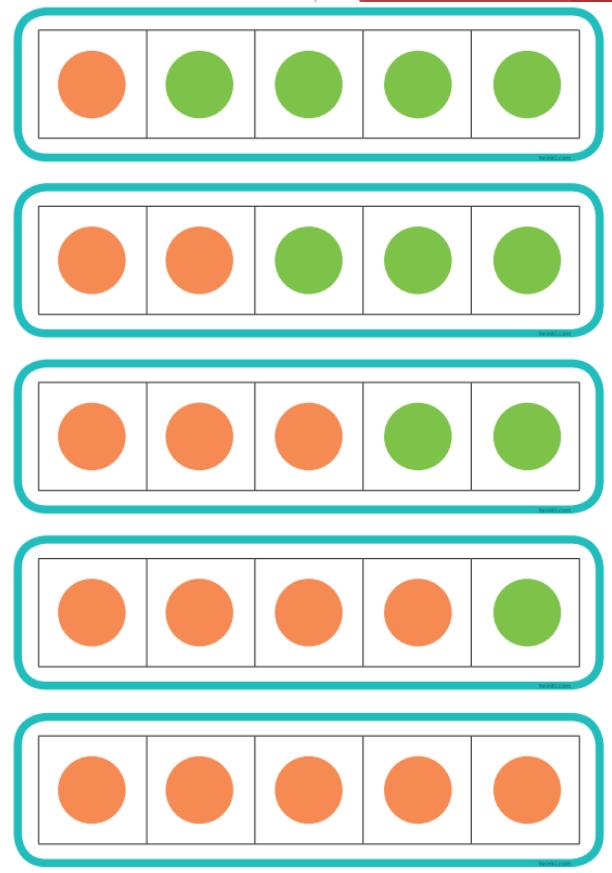
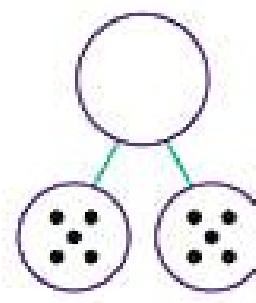
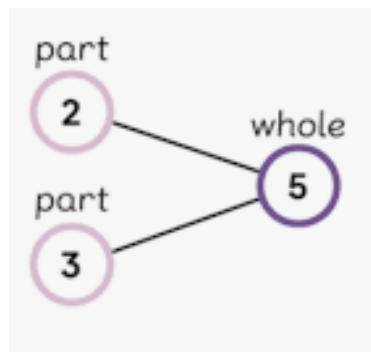
$40 + 6 \bigcirc 6 + 40$

$45 - 5 \bigcirc 56 - 6$

$45 - 5 \bigcirc 46 - 6$

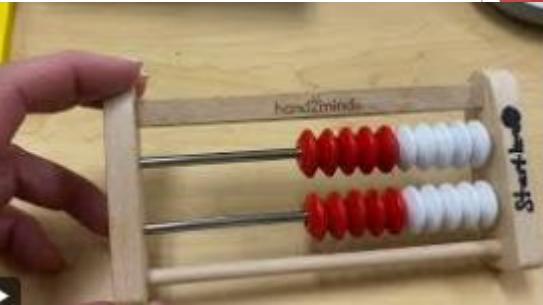

$45 - 40 \bigcirc 72 - 70$

$45 - 40 \bigcirc 46 - 40$

Challenge – explain your method to your talk partner

What are number bonds and why are they important?


	$20 =$		$1 + 19$		$2 + 18$		$3 + 17$
--	--------	--	----------	--	----------	--	----------

Alfriston School

Fair, friendly, fulfilling, fun!

Fluency in Year 1 and 2

Mastering Number

Year 1 Overview

Term 1	Term 2	Term 3
Pupils will have an opportunity to consolidate the Early Learning Goals and continue to explore the composition of numbers within 10, and the position of these numbers in the linear number system.	Pupils will continue to explore the composition of numbers within 10 and explore addition and subtraction structures and the related language (without the use of symbols).	Pupils will explore the composition of numbers within 20 and their position in the linear number system. They will connect addition and subtraction expressions and equations to 'number stories'.

Year 2 Overview

Term 1	Term 2	Term 3
Pupils will have an opportunity to consolidate their understanding and recall of number bonds within 10; they will re-cap the composition of the numbers 11 to 20 and reason about their position within the linear number system.	Pupils will have an opportunity to use their knowledge of the composition of numbers within 10 to calculate within 20; they will explore the links between the numbers in the linear number system within 10 to numbers within 100, focusing on multiples of 10 and the midpoint of 50.	Pupils will have further opportunities to use their knowledge of the composition of numbers within 10 to calculate within 20 and to reason about equations and inequalities.

The 'ready position'
"the reds are ready to go"
"one push"

A rekenrek:

- Exposes the structure of the maths
Eg. how numbers are composed or to understand calculations
- Use subitising skills (not counting in ones)
- The goal is to be able to do the maths without a rekenrek
- Pupils learn to visualise the beads

Alfriston School

Fair, friendly, fulfilling, fun!

Maths in years 3 and 4

Y3/4 A	1	2	3	4	5	6	7	8	9	10	11	12	13
C1	Unit 1 (NCETM Y3) Adding and subtracting across 10												Unit 2 (NCETM Y3) Numbers to 1,000
C2													Consolidation
C3	Unit 3 (NCETM Y4 – Unit 2) Numbers to 10,000		Unit 4 (NCETM Y3 Unit 5 and Y4 Unit 1) Column addition Review of column addition	Unit 5 (NCETM Y3 Unit 7 and Y4 Unit 1) Column subtraction Review of column subtraction		Unit 6 (NCETM Y4 Unit 4) 3, 6, 9 times tables							Consolidation
	Unit 7 (NCETM Y4 Unit 4) 7 times table and patterns	Unit 8 (NCETM Y4 Unit 8) Review of fractions from KS1	Unit 9 (NCETM Y3 Unit 8) Unit fractions	Unit 10 (NCETM Y3 Unit 9) Non-unit fractions		Unit 11 (NCETM Y4 Unit 9) Fractions greater than 1	Unit 12 (NCETM Y3 Unit 10) Parallel and perpendicular sides in polygons	Unit 13 (NCETM Y4 Unit 10) Symmetry in 2D shapes					Consolidation

Y3/4 B	1	2	3	4	5	6	7	8	9	10	11	12	13
C1	Unit 1 (NCETM Y3) Adding and subtracting across 10	Unit 2 (NCETM Y3) Numbers to 1,000			Unit 3 (NCETM Y3 Unit 4) Manipulating the additive relationship and securing mental calculation			Unit 4 (NCETM Y3 Unit 5 and Y4 Unit 1) Column addition		Unit 5 (NCETM Y3 Unit 7 and Y4 Unit 1) Column subtraction Review of column subtraction		Unit 6 (NCETM Year 3 Unit 6) 2, 4 and 8 times tables	
FF Y3	Adding 1 Commutative: 7+1 and 1+7	Doubles of numbers to 5 1+1, 2+2, 3+3, 4+4, 5+5	Adding 2 Commutative: 7+2 and 2+7	Number bonds to 10 0+10, 1+9, 2+8, 3+7, 4+6	Adding 10 To single digits	Adding 0	The ones without a family 3+5, 5+3, 3+6, 6+3	Near Doubles within 10 3+4, 4+3, 4+5, 5+4	Doubles of numbers to 10 6+6, 7+7, 8+8, 9+9, 10+10	Near doubles bridging 10 5+6, 6+5, 6+7, 7+6	Near doubles bridging 10 7+8, 8+7, 8+9, 9+8	Bridging 10 3+8, 8+3 3+9, 9+3	
FF Y4	Recap Year 3 All Addition/Subtraction facts within 10 and 2,5,4, 10 tts			8 times tables (5 new facts – 8x3, 8x6, 8x7, 8x8, 8x9)		8 times tables (all) plus all previous facts learnt		3 times tables (4 new facts – 3x3, 6x3, 7x3, 9x3)				3 times tables plus all previous facts	
C2	Unit 6 (NCETM Year 3 Unit 6) 2, 4 and 8 times tables		Unit 7 (NCETM Y4 – Unit 6) Understanding and manipulating multiplicative relationships			Unit 8 (NCETM Y3 Unit 8) Unit fractions			Unit 9 (NCETM Y3 Unit 9) Non-unit fractions				

WHY SAPPHIRE CLASS LOVES MATHS!

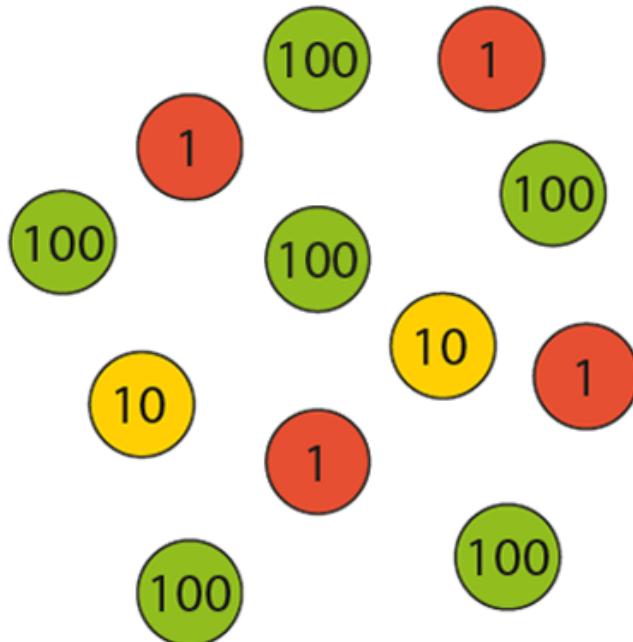
- ▶ “I like that maths is a challenging subject!”
- ▶ “I like the use of different resources!”
- ▶ “I like this maths scheme because it shows me how I can partition in different ways and make things more accurate and efficient!”
- ▶ I like maths because there is always lots to do and I’m always busy!”
- ▶ ‘I like the reconnects, they help us get our maths brains ready!’
- ▶ “I like the different methods – bridging through 100 and from 100!”
- ▶ ‘I like the connections made in maths fluency and our lessons. It’s given me strategies to work out my 12 times tables!’
- ▶ “I like that we use whiteboards – it helps my confidence!”

Alfriston School

Fair, friendly, fulfilling, fun!

Maths in year 3 and 4

1000	2000	3000	4000	5000	6000	7000	8000	9000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

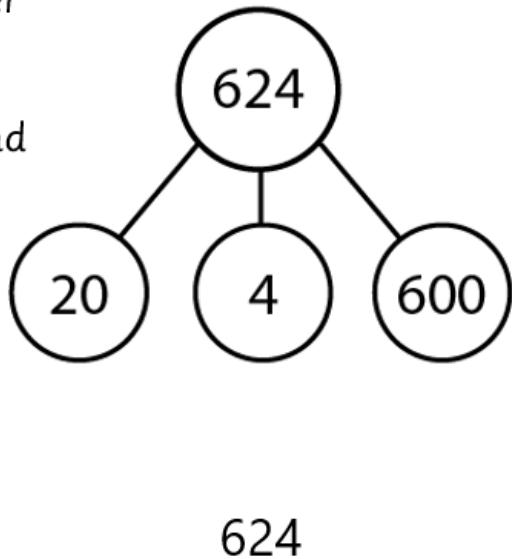

Alfriston School

Fair, friendly, fulfilling, fun!

What 3 digit number do you see here?
Write it in your book?

Explain your answer to your talk partner using the correct place value.

There are _____ hundreds, _____ tens and _____ ones in _____.


Alfriston School

Fair, friendly, fulfilling, fun!

What 3 digit number do you see here?
write it in your book?

Explain your answer to your talk partner
using the correct place value.

There are _____ hundreds, _____ tens and
_____ ones in _____.

What number does this represent?
This represents six-hundred and
twenty-four.

624

What digit is in the tens place?

Two

2

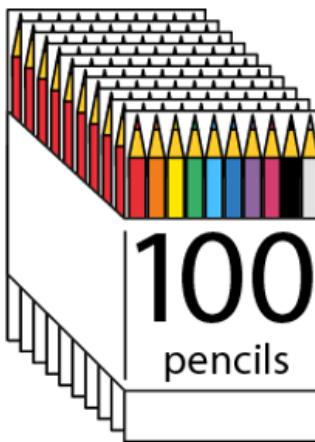
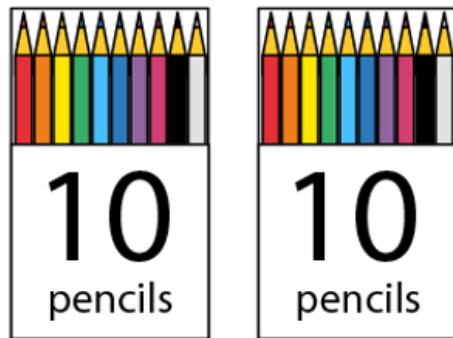
What digit is the value of the tens
digit?

Twenty

20

What does the '2' represent?

Two tens/twenty



2 tens/20

Alfriston School

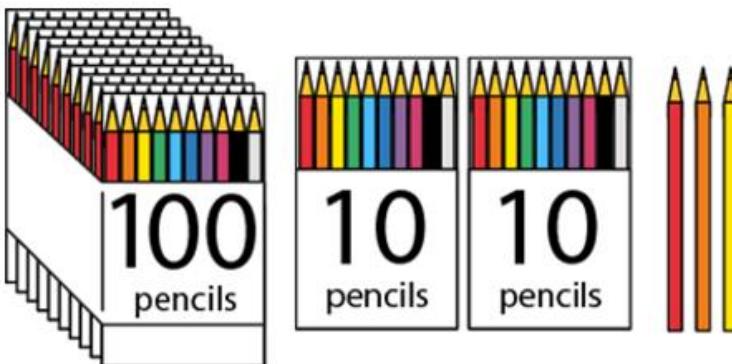
Fair, friendly, fulfilling, fun!

What 3 digit number do you see here?
Write it in your book?

Explain your answer to your talk partner
using the correct place value.

There are _____ hundreds, _____
tens and
_____ ones in _____.

123



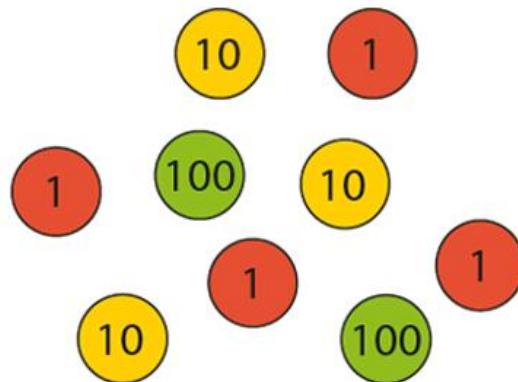
Alfriston School

Fair, friendly, fulfilling, fun!

Is this the same amount as before?

Explain your answer.

What mistake could someone make?



Alfriston School

Fair, friendly, fulfilling, fun!

Draw part-part-part whole models to represent
The hundreds, tens and ones parts of each of these numbers.

If you were teacher how would you
teach this to your class?

Alfriston School

Fair, friendly, fulfilling, fun!

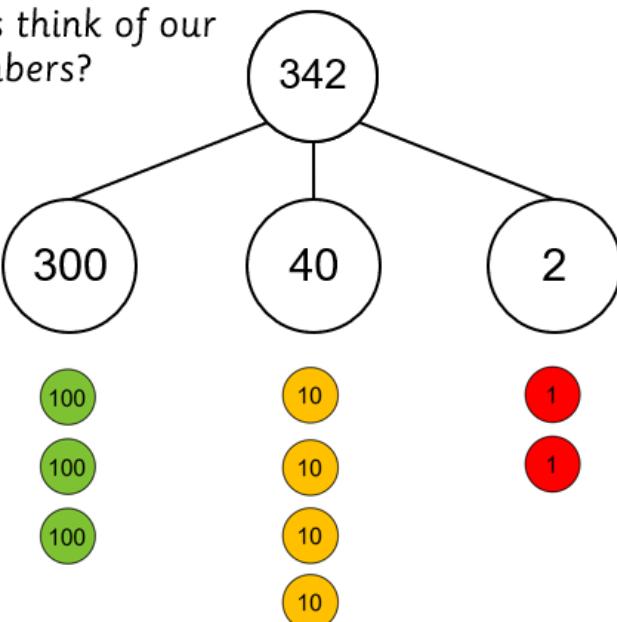
Using all of these counters, how many different three – digit numbers can you make?

Have you made all the possible numbers?

How do you know?

100s	10s	1s
2	1	1

Can you represent your numbers in a different way?



Alfriston School

Fair, friendly, fulfilling, fun!

3NPV-2 Place value in three-digit numbers

Now let's think of our own numbers?

- Represent this number using place value counters and a part-part-whole model.
- What digit is in the tens place? What is the value of the hundreds digit?
- What does the 2 represent?

The 2 represents two ones.

- Repeat for different 3-digit numbers
- Show children representations of numbers either using part-part-whole or place value counters and ask them to write the value of each number represented.

Alfriston School

Fair, friendly, fulfilling, fun!

Maths in years 5 and 6

Key Vocabulary

Whole

Parts

Decimal

Tenths

Equal

Decimal Point

Generalisation

Place Value
Column

Alfriston School

Fair, friendly, fulfilling, fun!

1,000s	100s	10s	1s

one tenth
the size

one tenth
the size

one tenth
the size

Alfriston School

Fair, friendly, fulfilling, fun!

If a digit is moved one column to the left, the number represented becomes ten time bigger/ten times the size.

1,000s	100s	10s	1s
1			
	1		
		1	
			1

one tenth
the size

one tenth
the size

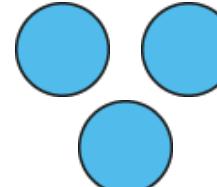
one tenth
the size

If a digit is moved one column to the right, the number represented becomes ten time smaller; we can also say it becomes one tenth the size.

Alfriston School

Fair, friendly, fulfilling, fun!

What is missing?


What does the number on the second row of the place value chart represent?

What does the number on the bottom row of the place value chart represent?

1,000s	100s	10s	1s	tenths
1	0	0	0	0
	1	0	0	0
		1	0	0
			1	0
			0	1

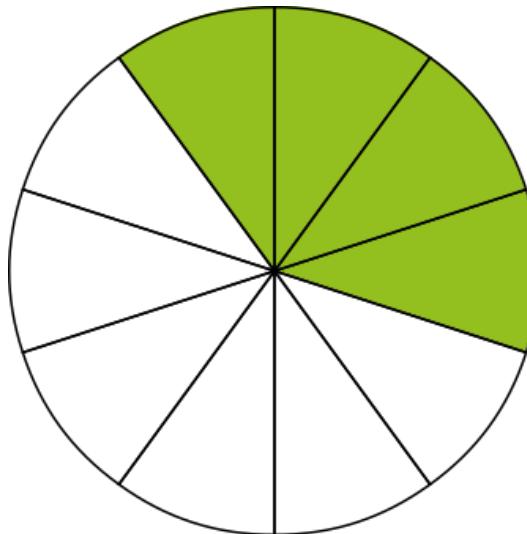
One tenth can
be written as
0.1 so _____
tenths can be
written as
0._____

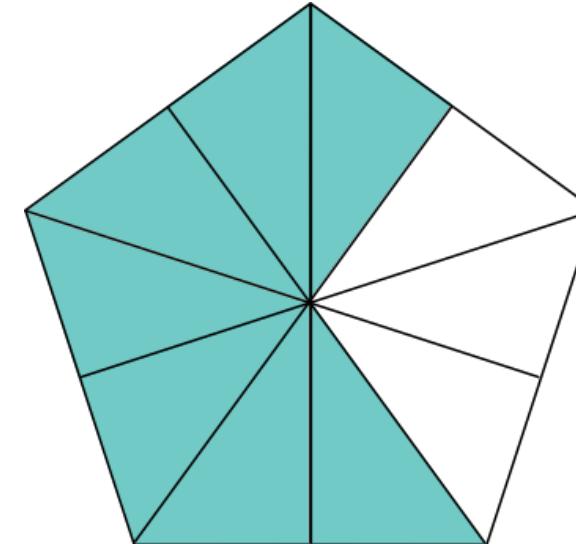
1,000s	100s	10s	1s	0.1s

1,000s	100s	10s	1s	0.1s
				3

Alfriston School

Fair, friendly, fulfilling, fun!


One tenth can
be written as
0.1 so _____
tenths can be
written as
0._____

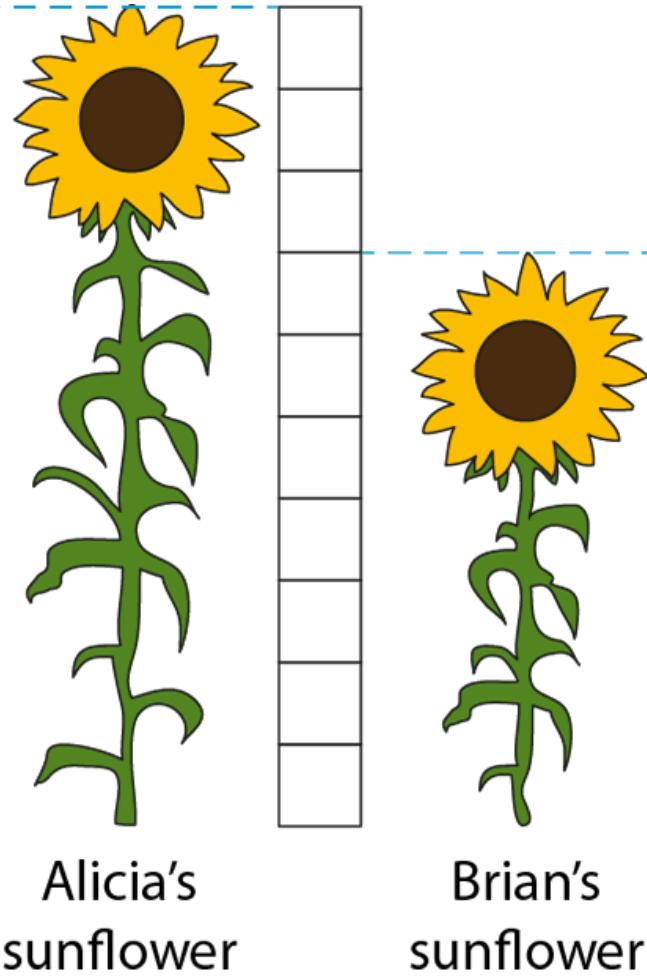

1,000s	100s	10s	1s	0.1s
				Two blue circles representing tenths of a whole.

Colour the diagrams to represent the numbers shown.

0.4

0.7

Can you think of three more examples/ways?

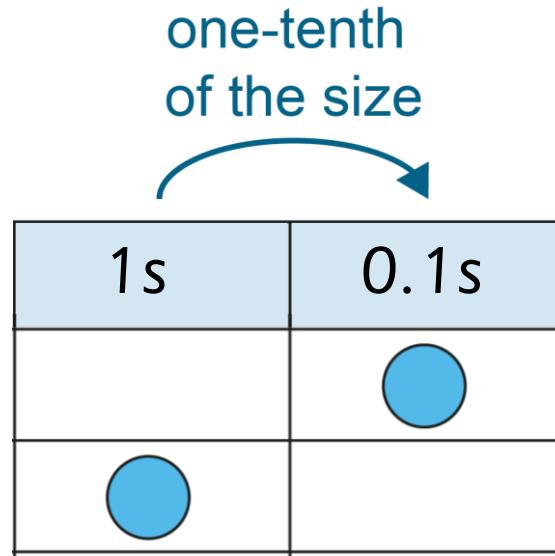


Alfriston School

Fair, friendly, fulfilling, fun!

Brian's sunflower is
_____ tenths the size
of Alicia's sunflower.

We can write this as
_____.

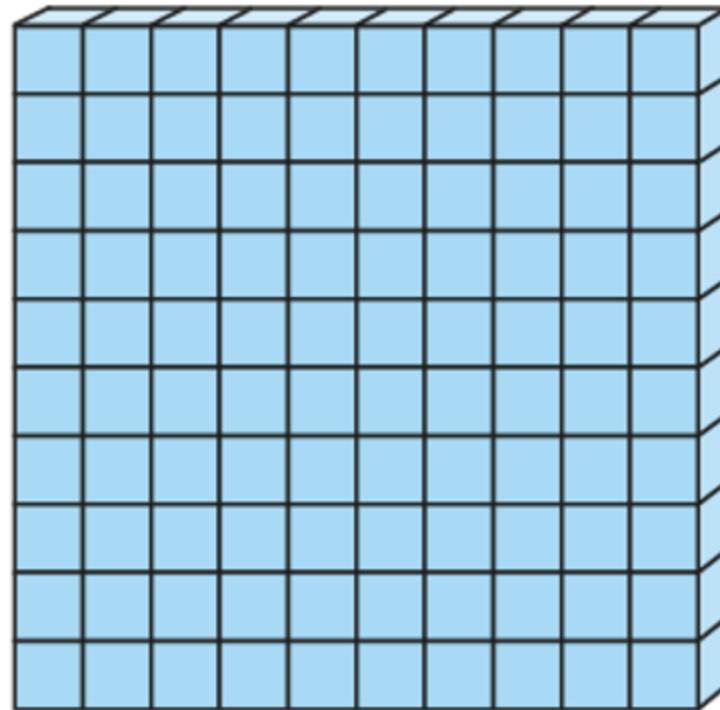

Surprise me – find
something new in what
you already know!

Alfriston School

Fair, friendly, fulfilling, fun!

ten times
the size

- If the blue counter has a value of 1, what happens to its value when it moves from the ones column to the tenths column?
- What happens to the counter's value when you move it the other way?


How would you teach this to a class if you were the teacher?

Alfriston School

Fair, friendly, fulfilling, fun!

Compare the value of the units. What do you notice?

1 one

1
tenth

How could you represent
this in a different way?

Alfriston School

Fair, friendly, fulfilling, fun!

Questioning

Why?

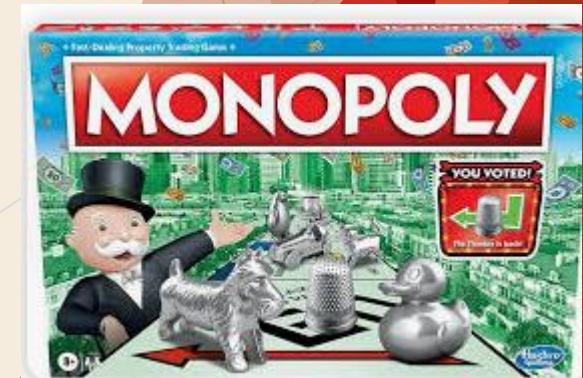
What happens if....?

How do you know?

Will that always happen?

Can you prove it to me?

How can you support your child with maths at home?



- Use of CPA (different representations)
- Explaining
- Problem solving
- Precise vocabulary
- Fluency
- Visualising
- Make connections
- Variety of contexts

Alfriston School

Fair, friendly, fulfilling, fun!

What concrete resources might be at home?

Alfriston School

Fair, friendly, fulfilling, fun!

Telling the time

Year 2 -

Tell the time
to 5 minutes

Year 3 -

Tell the time
to the nearest minute

Time ideas and activities

Have a clock (analogue) in a prominent position

Refer to the time at regular points (bedtime, dinner time etc.)

Use stop watches and timers to give a sense of time

Time snap games

Images of clocks with key vocabulary

Alfriston School

Fair, friendly, fulfilling, fun!

How can I help my child?

Finding and talking about maths in everyday situations.

For example, a shopping trip is rich in mathematical opportunities, such as:

- ▶ spending money, calculating change and working out which offers give the best value for money.
- ▶ empty packaging can provide your child will immediate access to 3D shapes and nets.
- ▶ using packets and tins as a source of mathematical information to discuss, such as mass and volume.
- ▶ using items often sold in pairs, fours and sixes (such as drinks or yogurts) to talk about multiples or times tables.

Alfriston School

Fair, friendly, fulfilling, fun!

Key Instant Recall Facts – KIRFs

- Termly objective (activity changed weekly)
- Years Reception to 6
- Improve children's fluency
- Instant recall of facts

What are the best ways to work on these facts?

Key Instant Recall Facts

Year 1 – Autumn 1

I can count, read and write numbers to 100

By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**.

- ▶ I can count forwards to 100
- ▶ I can count in ones starting at any number up to 100
- ▶ I can count backwards from 100
- ▶ I can count backwards from 100 starting at any number
- ▶ I can write numbers to 100
- ▶ I can recognise numbers to 100

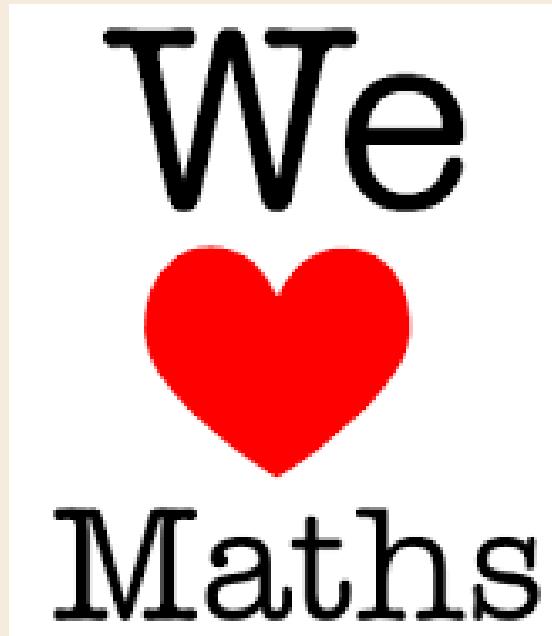
Key vocabulary
Forwards
Backwards

Top Tips

The secret to success is practising **little** and **often**. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

Use practical resources – Grab handfuls of pasta or buttons and ask your child to count them

Alfriston School


Fair, friendly, fulfilling, fun!

How can I help my child?

Be positive
about maths!

Refrain from
negative comments.

Praise your child for
effort, rather than
being clever.

Never say,
“I’m not good at maths!”
or
“I hated maths at school!”

See & talk about
maths as part of
everyday ‘real’ life.

Alfriston School

Fair, friendly, fulfilling, fun!

Questions

Thank you very much for coming

Department
for Education

